Dianthus Medical Blog Archive

Student tuition fees and disadvantaged applicants

One of the most significant political events of the current Parliament has been the huge increase in student tuition fees, which mean that most university students now need to pay £9000 per year for their education.

One of the arguments against this rise used by its opponents was that it would put off young people from disadvantaged backgrounds from applying to university. Supporters of the new system argued that it would not, as students can borrow the money via a student loan to be paid back over a period of decades, so no-one would have to find the money up front.

The new fees came into effect in 2012, so we should now have some empirical data that should allow us to find out who was right. So what do the statistics show? Have people from disadvantaged backgrounds been deterred from applying to university?

A report was published earlier this year by UCAS, the organisation responsible for handling applications to university. This specifically addresses the question of applications from disadvantaged areas. This shows (see page 17 of the report) that although there was a small drop in application rates from the most disadvantaged areas immediately after the new fees came into effect, from 18.0% in 2011 to 17.5% in 2012, the rates have since risen to 20.5% in 2014. And the ratio of the rate of applications from the most advantaged areas to the most disadvantaged areas fell from 3.0 in 2011 to 2.5 in 2014.

So, case closed, then? Clearly the new fees have not stopped people from disadvantaged areas applying to university?

Actually, no. It's really not that simple. You see, there is a big statistical problem with the data.

That problem is known as regression to the mean. This is a tendency of characteristics with particularly high or low values to become more like average values over time. It's something we know all about in clinical trials, and is one of the reasons why clinical trials need to include control groups if they are going to give reliable data. For example, in a trial of a medication for high blood pressure, you would expect patients' blood pressure to decrease during the trial no matter what you do to them, as they had to have high blood pressure at the start of the trial or they wouldn't have been included in it in the first place.

In the case of the university admission statistics, the specific problem is the precise way in which "disadvantaged areas" and "advantaged areas" were defined.

The advantage or disadvantage of an area was defined by the proportion of young people participating in higher education during the period 2000 to 2004. Since the "disadvantaged" areas were specifically defined as those areas that had previously had the lowest participation rates, it is pretty much inevitable that those rates would increase, no matter what the underlying trends were.

Similarly, the most advantaged areas were almost certain to see decreases in participation rates (at least relatively speaking, though this is somewhat complicated by the fact that overall participation rates have increased since 2004).

So the finding that the ratio of applications from most advantaged areas to those from least advantaged areas has decreased was exactly what we would expect from regression to the mean. I'm afraid this does not provide evidence that the new tuition fee regime has been beneficial to people from disadvantaged backgrounds. It is very had to disentangle any real changes in participation rates from different backgrounds from the effects of regression to the mean.

Unless anyone can point me to any better statistics on university applications from disadvantaged backgrounds, I think the question of whether the new tuition fee regime has helped or hindered social inequalities in higher education remains open.

← Should we eat 7 portions of fruit and veg a day? Dianthus Medical now has a YouTube channel →